$V = 3276.3 (17) \text{ Å}^3$

Mo $K\alpha$ radiation $\mu = 0.49 \text{ mm}^{-1}$

 $0.20 \times 0.18 \times 0.15~\mathrm{mm}$

18060 measured reflections 7157 independent reflections

6119 reflections with $I > 2\sigma(I)$

Z = 4

T = 293 K

 $R_{\rm int} = 0.025$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tricarbonyl[η^5 -2-(methyldiphenylphosphaniumyl)-1,3,4-triphenylcyclopentadienyl]molybdenum(0)

Tao Xu, Junwei Ye, Weitao Gong, Yuan Lin and Guiling Ning*

State Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, Dalian 116012, People's Republic of China Correspondence e-mail: ninggl@dlut.edu.cn

Received 6 September 2010; accepted 5 October 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.028; wR factor = 0.053; data-to-parameter ratio = 18.0.

The title compound, $[Mo(C_{36}H_{29}P)(CO)_3]$, contains an Mo^0 atom with a typical piano-stool coordination defined by the phosphonium cyclopentadienylide ligand η^5 -1-(methyldiphenvlphosphaniumyl)-2,3,5-triphenyl-2,4-cyclopentadien-1-yl and by three carbonyl groups. The distance between the Mo⁰ atom and the cyclopentadienyl ring is 2.0616 (13) Å.

Related literature

For background to phosphonium cyclopentadienylides, see: Ramirez & Levy (1956); Brownie et al. (2007). For P-C and P=C bond lengths, see: Weast (1984) and Bart (1969), respectively.

Experimental

Crystal data

$Mo(C_{36}H_{29}P)(CO)_3]$	
$M_r = 672.53$	
Orthorhombic, <i>Pna</i> 2 ₁	
a = 21.609 (7) Å	
p = 10.440 (3) Å	
c = 14.522 (5) Å	

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.909, \ T_{\max} = 0.931$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.028$	H-atom parameters constrained
$wR(F^2) = 0.053$	$\Delta \rho_{\rm max} = 0.33 \text{ e} \text{ \AA}^{-3}$
S = 1.02	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$
7157 reflections	Absolute structure: Flack (1983),
397 parameters	3271 Friedel pairs
1 restraint	Flack parameter: -0.03 (2)
	1 ()

Table 1 Selected bond lengths (Å).

Mo1-C39	1.927 (3)	Mo1-C3	2.417 (2)
Mo1-C38	1.937 (3)	Mo1-C2	2.419 (2)
Mo1-C37	1.946 (3)	P1-C1	1.779 (2)
Mo1-C4	2.374 (3)	P1-C24	1.793 (3)
Mo1-C1	2.379 (2)	P1-C31	1.799 (3)
Mo1-C5	2.387 (2)	P1-C25	1.806 (3)

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the National Natural Science Foundation of China (grant Nos. 20772014 and 51003009) and the Specialized Research Fund for the Doctoral Program of Higher Education (200801411121).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2404).

References

Bart, J. C. (1969). J. Chem. Soc. B, pp. 350-365.

Brownie, J. H., Schmider, H. & Baird, M. C. (2007). Organometallics, 26, 1433-1443.

Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Ramirez, F. & Levy, S. (1956). J. Org. Chem. 21, 488-489.

Sheldrick, G. M. (1996). SADABS. University of Góttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Weast, R. C. (1984). CRC Handbook of Chemistry & Physics, 65th ed. Boca Raton, Florida, USA: CRC Press.

Acta Cryst. (2010). E66, m1391 [doi:10.1107/S1600536810039747]

$\label{eq:linear} Tricarbonyl [\emph{M}^5-2-(methyldiphenylphosphaniumyl)-1,3,4-triphenylcyclopentadienyl]molybdenum(0)$

T. Xu, J. Ye, W. Gong, Y. Lin and G. Ning

Comment

Coordination complexes of phosphonium cyclopentadienylides have attracted more and more attention in recent years because of their application in catalysis. Although phosphonium cyclopentadienylides were first reported in 1956 by Ramirez & Levy, only few compounds beyond $C_5H_4PPh_3$ have been reported, probably due to the difficulties in characterizing them (Brownie *et al.*, 2007). It is supposed that the behavior of this class of compounds depends on the substitutions on phosphorus.

The title compound, $\{Mo[\eta^5-C_5HPh_3(PPh_2CH_3)](CO)_3\}$, contains a Mo(0) atom in a typical piano stool coordination.

The Mo atom is coordinated by a η^5 -(1,2,3,4,5-)-1-(methyldiphenylphosphonio)-2,3,5-triphenyl-2,4- cyclopentadien-1-yl ligand and three carbonyl groups. The distance between the Mo atom and the cyclopentadienyl ring is 2.0616 (13) Å. The P—C1 bond length, i.e. the phosphonium cyclopentadienylide bond, is 1.779 (2) Å, which lies between that of a typical P—C single bond (1.870 Å; Weast, 1984) and a P=C double bond (1.660 Å; Bart, 1969). This behavioutr consistent with the zwitterionic resonance structure of such phosphonium cyclopentadienylide compounds.

Experimental

A solution of 0.49 g of $C_5HPh_3PPh_2CH_3$ and 1.06 g of $Mo(CO)_3(CH_3CN)_3$ in 20 ml of THF was refluxed under argon for 3 h, during which time the solution developed a black-green color. The reaction mixture was cooled and filtered, and the solid residue was washed with THF. The resulting filtrate was then treated with 200 ml of hexane to precipitate a yellow solid that was collected and washed with hexanes. The solid was dried *in vacuo* to yield 0.40 g yellow product. X-ray quality crystals were obtained by re-crystallization from CH_2Cl_2 solution at 243 K by layering with hexane.

Refinement

C-bound H atoms were placed in calculated positions (C—H = 0.93 Å) and refined in the riding-model approximation with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. Molecular structure of the title compound showing the atom labelling and displacement ellipsoids ate the 30% probability level.

$Tricarbonyl [\eta^5-2-(methyldiphenylphosphaniumyl)-1,3,4-\ triphenylcyclopentadienyl]molybdenum(0)$

Crystal data

$[Mo(C_{36}H_{29}P)(CO)_3]$	F(000) = 1376
$M_r = 672.53$	$D_{\rm x} = 1.363 {\rm ~Mg~m}^{-3}$
Orthorhombic, Pna21	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2c -2n	Cell parameters from 7157 reflections
a = 21.609 (7) Å	$\theta = 2.2 - 27.5^{\circ}$
b = 10.440 (3) Å	$\mu = 0.49 \text{ mm}^{-1}$
c = 14.522 (5) Å	T = 293 K
$V = 3276.3 (17) \text{ Å}^3$	Block, yellow
Z = 4	$0.20\times0.18\times0.15~mm$

Data collection

Bruker SMART CCD area-detector diffractometer	7157 independent reflections
Radiation source: fine-focus sealed tube	6119 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.025$
ϕ and ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -22 \rightarrow 28$
$T_{\min} = 0.909, \ T_{\max} = 0.931$	$k = -12 \rightarrow 13$
18060 measured reflections	$l = -17 \rightarrow 18$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.028$	H-atom parameters constrained
$wR(F^2) = 0.053$	$w = 1/[\sigma^2(F_o^2) + (0.0086P)^2 + 1.1254P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{\rm max} = 0.001$
7157 reflections	$\Delta \rho_{max} = 0.33 \text{ e } \text{\AA}^{-3}$
397 parameters	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$
1 restraint	Absolute structure: Flack (1983), 3271 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: -0.03 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Mol	0.090219 (7)	0.464808 (17)	0.09453 (2)	0.03469 (5)
P1	-0.03449 (2)	0.68125 (5)	0.10290 (6)	0.03555 (13)
C1	0.01081 (10)	0.5893 (2)	0.02477 (16)	0.0303 (5)
C2	0.06846 (10)	0.6281 (2)	-0.01911 (17)	0.0331 (5)
C3	0.09209 (10)	0.5205 (2)	-0.06697 (16)	0.0324 (5)
C4	0.04978 (11)	0.4162 (3)	-0.05343 (19)	0.0343 (6)
H4A	0.0528	0.3325	-0.0837	0.041*
C5	-0.00034 (10)	0.4570 (2)	0.00062 (16)	0.0335 (5)
C6	-0.05804 (11)	0.3791 (2)	0.01401 (19)	0.0387 (6)
C7	-0.05867 (13)	0.2687 (3)	0.0644 (2)	0.0684 (11)
H7A	-0.0228	0.2424	0.0942	0.082*
C8	-0.11187 (16)	0.1949 (3)	0.0719 (3)	0.0873 (15)
H8A	-0.1114	0.1207	0.1073	0.105*
С9	-0.16466 (14)	0.2303 (3)	0.0279 (3)	0.0722 (10)
H9A	-0.2002	0.1805	0.0328	0.087*
C10	-0.16507 (14)	0.3391 (3)	-0.0234 (3)	0.0746 (11)
H10A	-0.2011	0.3642	-0.0533	0.089*
C11	-0.11182 (12)	0.4135 (3)	-0.0313 (2)	0.0578 (8)
H11A	-0.1124	0.4870	-0.0675	0.069*
C12	0.09243 (11)	0.7620 (2)	-0.02714 (18)	0.0387 (5)
C13	0.06036 (17)	0.8457 (3)	-0.0838 (3)	0.0601 (10)
H13A	0.0239	0.8195	-0.1122	0.072*
C14	0.0831 (2)	0.9701 (4)	-0.0982 (4)	0.0843 (16)
H14A	0.0616	1.0264	-0.1361	0.101*
C15	0.1365 (2)	1.0085 (3)	-0.0566 (3)	0.1018 (15)
H15A	0.1511	1.0913	-0.0658	0.122*
C16	0.16889 (17)	0.9252 (3)	-0.0012 (3)	0.0841 (12)
H16A	0.2056	0.9517	0.0263	0.101*
C17	0.14722 (13)	0.8024 (3)	0.0138 (2)	0.0538 (7)
H17A	0.1693	0.7467	0.0513	0.065*
C18	0.14706 (11)	0.5116 (2)	-0.12831 (17)	0.0368 (6)
C19	0.16267 (12)	0.6105 (3)	-0.18867 (19)	0.0490 (7)
H19A	0.1402	0.6865	-0.1877	0.059*
C20	0.21134 (14)	0.5965 (4)	-0.2501 (2)	0.0636 (9)
H20A	0.2212	0.6632	-0.2900	0.076*
C21	0.24515 (14)	0.4847 (4)	-0.2525 (2)	0.0711 (10)
H21A	0.2777	0.4756	-0.2938	0.085*
C22	0.23048 (14)	0.3872 (4)	-0.1937 (2)	0.0689 (10)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H22A	0.2533	0.3118	-0.1953	0.083*
C23	0.18213 (12)	0.3989 (3)	-0.1317 (2)	0.0514 (7)
H23A	0.1729	0.3316	-0.0921	0.062*
C24	-0.07093 (13)	0.5793 (3)	0.1861 (2)	0.0509 (7)
H24A	-0.0399	0.5323	0.2192	0.076*
H24B	-0.0980	0.5204	0.1552	0.076*
H24C	-0.0944	0.6305	0.2285	0.076*
C25	-0.09837 (10)	0.7619 (2)	0.04752 (19)	0.0413 (6)
C26	-0.14111 (10)	0.8270 (2)	0.1020 (4)	0.0575 (7)
H26A	-0.1342	0.8355	0.1649	0.069*
C27	-0.19363 (13)	0.8787 (3)	0.0632 (3)	0.0725 (12)
H27A	-0.2220	0.9222	0.0998	0.087*
C28	-0.20402 (15)	0.8661 (3)	-0.0288 (3)	0.0780 (12)
H28A	-0.2395	0.9012	-0.0548	0.094*
C29	-0.16256 (16)	0.8021 (3)	-0.0834 (3)	0.0724 (10)
H29A	-0.1702	0.7930	-0.1461	0.087*
C30	-0.10906 (12)	0.7509 (3)	-0.0450 (2)	0.0497 (7)
H30A	-0.0805	0.7090	-0.0823	0.060*
C31	0.00960 (11)	0.7999 (3)	0.16427 (19)	0.0449 (6)
C32	0.01231 (13)	0.9249 (3)	0.1323 (2)	0.0603 (9)
H32A	-0.0090	0.9487	0.0794	0.072*
C33	0.04738 (18)	1.0141 (3)	0.1807 (4)	0.0928 (14)
H33A	0.0511	1.0975	0.1591	0.111*
C34	0.0765 (2)	0.9780 (6)	0.2607 (5)	0.105 (2)
H34A	0.0988	1.0387	0.2937	0.126*
C35	0.0734 (2)	0.8571 (6)	0.2923 (3)	0.0901 (16)
H35A	0.0941	0.8351	0.3462	0.108*
C36	0.03997 (14)	0.7659 (4)	0.2455 (2)	0.0643 (9)
H36A	0.0376	0.6825	0.2678	0.077*
C37	0.14583 (13)	0.5571 (3)	0.1764 (2)	0.0522 (7)
C38	0.15035 (11)	0.3277 (3)	0.1025 (3)	0.0553 (7)
C39	0.05614 (15)	0.3925 (3)	0.2056 (2)	0.0515 (8)
01	0.17930 (11)	0.6087 (3)	0.22580 (17)	0.0856 (8)
O2	0.18565 (10)	0.2438 (2)	0.1075 (2)	0.0902 (8)
O3	0.03489 (12)	0.3497 (3)	0.27201 (17)	0.0861 (8)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mo1	0.02964 (8)	0.04116 (9)	0.03328 (9)	0.00048 (8)	-0.00279 (14)	0.00333 (15)
P1	0.0293 (3)	0.0414 (3)	0.0359 (4)	0.0018 (2)	0.0032 (4)	0.0008 (4)
C1	0.0277 (11)	0.0318 (12)	0.0314 (12)	-0.0002 (10)	-0.0014 (9)	0.0033 (10)
C2	0.0268 (11)	0.0365 (13)	0.0359 (14)	-0.0023 (10)	-0.0028 (10)	0.0038 (11)
C3	0.0282 (11)	0.0359 (12)	0.0333 (13)	0.0000 (10)	-0.0031 (10)	0.0001 (10)
C4	0.0317 (13)	0.0326 (13)	0.0386 (16)	-0.0016 (11)	-0.0025 (12)	-0.0007 (12)
C5	0.0293 (12)	0.0367 (13)	0.0345 (13)	-0.0037 (10)	-0.0031 (10)	0.0045 (11)
C6	0.0311 (13)	0.0401 (15)	0.0450 (16)	-0.0078 (11)	0.0014 (11)	0.0014 (12)
C7	0.0484 (16)	0.0592 (18)	0.098 (3)	-0.0166 (14)	-0.0147 (16)	0.0272 (17)

C8	0.079 (2)	0.068 (2)	0.115 (4)	-0.0338 (17)	-0.006 (2)	0.034 (2)
C9	0.0416 (17)	0.071 (2)	0.104 (3)	-0.0245 (17)	0.0137 (18)	-0.011 (2)
C10	0.0396 (17)	0.066 (2)	0.118 (3)	-0.0076 (16)	-0.0168 (19)	-0.011 (2)
C11	0.0389 (15)	0.0506 (17)	0.084 (2)	-0.0098 (13)	-0.0140 (15)	0.0076 (16)
C12	0.0381 (13)	0.0364 (13)	0.0417 (14)	-0.0046 (11)	0.0054 (11)	0.0000 (11)
C13	0.055 (2)	0.045 (2)	0.080 (3)	-0.0069 (16)	-0.0088 (18)	0.0147 (17)
C14	0.104 (4)	0.049 (2)	0.100 (3)	-0.010 (2)	-0.021 (3)	0.026 (2)
C15	0.124 (4)	0.051 (2)	0.131 (4)	-0.042 (2)	-0.024 (3)	0.024 (2)
C16	0.085 (3)	0.072 (2)	0.095 (3)	-0.044 (2)	-0.016 (2)	0.007 (2)
C17	0.0505 (17)	0.0516 (17)	0.0592 (19)	-0.0163 (14)	-0.0073 (14)	0.0016 (14)
C18	0.0267 (12)	0.0508 (16)	0.0329 (13)	-0.0070 (11)	-0.0016 (10)	-0.0045 (11)
C19	0.0421 (15)	0.0614 (18)	0.0435 (16)	-0.0076 (13)	0.0013 (12)	0.0002 (14)
C20	0.0468 (18)	0.100 (3)	0.0445 (18)	-0.0223 (18)	0.0086 (14)	0.0053 (17)
C21	0.0384 (16)	0.127 (3)	0.048 (2)	-0.004 (2)	0.0114 (14)	-0.015 (2)
C22	0.0472 (17)	0.099 (3)	0.061 (2)	0.0221 (18)	-0.0001 (16)	-0.024 (2)
C23	0.0430 (15)	0.0658 (19)	0.0453 (17)	0.0073 (14)	-0.0008 (13)	-0.0081 (14)
C24	0.0478 (16)	0.0606 (18)	0.0441 (17)	0.0030 (13)	0.0158 (13)	0.0102 (13)
C25	0.0262 (12)	0.0432 (14)	0.0547 (16)	-0.0006 (11)	-0.0001 (11)	0.0043 (12)
C26	0.0393 (13)	0.0641 (16)	0.0690 (19)	0.0075 (11)	0.008 (2)	0.003 (2)
C27	0.0371 (15)	0.068 (2)	0.113 (4)	0.0129 (14)	0.0129 (17)	0.012 (2)
C28	0.0386 (18)	0.084 (3)	0.112 (3)	0.0055 (16)	-0.014 (2)	0.037 (2)
C29	0.061 (2)	0.086 (3)	0.071 (2)	-0.0064 (19)	-0.0200 (18)	0.030 (2)
C30	0.0414 (15)	0.0576 (18)	0.0501 (18)	-0.0016 (13)	-0.0027 (13)	0.0150 (14)
C31	0.0347 (14)	0.0532 (17)	0.0468 (17)	0.0057 (12)	-0.0015 (12)	-0.0120 (13)
C32	0.0475 (17)	0.0502 (17)	0.083 (3)	0.0036 (13)	-0.0095 (14)	-0.0140 (15)
C33	0.074 (2)	0.053 (2)	0.152 (4)	0.0051 (18)	-0.024 (3)	-0.031 (2)
C34	0.074 (3)	0.095 (4)	0.147 (5)	0.002 (3)	-0.039 (3)	-0.061 (4)
C35	0.084 (3)	0.105 (4)	0.081 (3)	0.017 (3)	-0.031 (2)	-0.041 (3)
C36	0.064 (2)	0.074 (2)	0.055 (2)	0.0133 (17)	-0.0113 (17)	-0.0166 (17)
C37	0.0429 (16)	0.069 (2)	0.0449 (18)	-0.0062 (14)	-0.0046 (13)	-0.0003 (15)
C38	0.0469 (13)	0.0680 (16)	0.0511 (17)	0.0091 (12)	-0.0078 (19)	0.003 (2)
C39	0.0493 (18)	0.064 (2)	0.0411 (19)	0.0000 (16)	-0.0066 (15)	0.0123 (16)
01	0.0682 (15)	0.121 (2)	0.0677 (17)	-0.0273 (15)	-0.0203 (13)	-0.0190 (15)
02	0.0739 (13)	0.0914 (15)	0.105 (2)	0.0428 (12)	-0.016 (2)	0.007 (2)
O3	0.0861 (17)	0.118 (2)	0.0547 (15)	-0.0116 (16)	0.0013 (13)	0.0379 (15)
Geometric	parameters (Å. °)					
	······································					

Geom	etric parameters (A,	9	
M = 1	C20		

Mo1-C39	1.927 (3)	C16—H16A	0.9300
Mo1-C38	1.937 (3)	C17—H17A	0.9300
Mo1—C37	1.946 (3)	C18—C19	1.396 (4)
Mo1—C4	2.374 (3)	C18—C23	1.400 (4)
Mo1—C1	2.379 (2)	C19—C20	1.387 (4)
Mo1—C5	2.387 (2)	C19—H19A	0.9300
Mo1—C3	2.417 (2)	C20—C21	1.378 (5)
Mo1—C2	2.419 (2)	C20—H20A	0.9300
P1	1.779 (2)	C21—C22	1.366 (5)
P1-C24	1.793 (3)	C21—H21A	0.9300
P1-C31	1.799 (3)	C22—C23	1.384 (4)

P1—C25	1.806 (3)	C22—H22A	0.9300
C1—C5	1.446 (3)	С23—Н23А	0.9300
C1—C2	1.457 (3)	C24—H24A	0.9600
C2—C3	1.417 (3)	C24—H24B	0.9600
C2—C12	1.495 (3)	C24—H24C	0.9600
C3—C4	1.435 (3)	C25—C30	1.369 (4)
C3—C18	1.488 (3)	C25—C26	1.393 (4)
C4—C5	1.404 (3)	C26—C27	1.378 (4)
C4—H4A	0.9800	C26—H26A	0.9300
C5—C6	1.501 (3)	C27—C28	1.361 (5)
C6—C7	1.365 (4)	С27—Н27А	0.9300
C6—C11	1.383 (4)	C28—C29	1.371 (5)
С7—С8	1.388 (4)	C28—H28A	0.9300
С7—Н7А	0.9300	C29—C30	1.390 (4)
C8—C9	1.359 (5)	С29—Н29А	0.9300
C8—H8A	0.9300	С30—Н30А	0.9300
C9—C10	1.358 (5)	C31—C32	1.386 (4)
С9—Н9А	0.9300	C31—C36	1.396 (4)
C10-C11	1.393 (4)	C32—C33	1.391 (4)
C10—H10A	0.9300	С32—Н32А	0.9300
C11—H11A	0.9300	C33—C34	1.372 (7)
C12—C13	1.386 (4)	С33—Н33А	0.9300
C12—C17	1.390 (3)	C34—C35	1.345 (8)
C13—C14	1.404 (5)	C34—H34A	0.9300
C13—H13A	0.9300	C35—C36	1.375 (5)
C14—C15	1.363 (6)	С35—Н35А	0.9300
C14—H14A	0.9300	С36—Н36А	0.9300
C15—C16	1.377 (5)	C37—O1	1.152 (3)
C15—H15A	0.9300	C38—O2	1.164 (3)
C16—C17	1.382 (4)	C39—O3	1.158 (4)
C39—Mo1—C38	85.26 (16)	C13—C12—C17	119.2 (3)
C39—Mo1—C37	85.32 (13)	C13—C12—C2	117.5 (2)
C38—Mo1—C37	85.14 (13)	C17—C12—C2	123.1 (2)
C39—Mo1—C4	122.21 (11)	C12—C13—C14	119.8 (4)
C38—Mo1—C4	98.21 (14)	C12—C13—H13A	120.1
C37—Mo1—C4	152.39 (11)	C14—C13—H13A	120.1
C39—Mo1—C1	107.14 (11)	C15-C14-C13	120.2 (4)
C38—Mo1—C1	155.93 (14)	C15—C14—H14A	119.9
C37—Mo1—C1	115.78 (11)	C13—C14—H14A	119.9
C4—Mo1—C1	57.73 (8)	C14—C15—C16	120.2 (3)
C39—Mo1—C5	98.71 (11)	C14—C15—H15A	119.9
C38—Mo1—C5	123.97 (12)	C16—C15—H15A	119.9
C37—Mo1—C5	150.75 (11)	C15—C16—C17	120.4 (3)
C4—Mo1—C5	34.29 (8)	C15—C16—H16A	119.8
C1—Mo1—C5	35.32 (8)	C17—C16—H16A	119.8
C39—Mo1—C3	155.91 (11)	C16—C17—C12	120.2 (3)
C38—Mo1—C3	102.95 (14)	С16—С17—Н17А	119.9
C37—Mo1—C3	117.62 (11)	С12—С17—Н17А	119.9
C4—Mo1—C3	34.85 (8)	C19—C18—C23	117.9 (2)

C1—Mo1—C3	57.82 (8)	C19—C18—C3	121.5 (2)
C5—Mo1—C3	57.82 (8)	C23—C18—C3	120.4 (2)
C39—Mo1—C2	140.60 (11)	C20-C19-C18	120.6 (3)
C38—Mo1—C2	133.79 (14)	С20—С19—Н19А	119.7
C37—Mo1—C2	100.83 (11)	C18—C19—H19A	119.7
C4—Mo1—C2	57.44 (9)	C21—C20—C19	120.5 (3)
C1—Mo1—C2	35.33 (7)	C21—C20—H20A	119.8
C5—Mo1—C2	58.33 (8)	С19—С20—Н20А	119.8
C3—Mo1—C2	34.08 (8)	C22—C21—C20	119.5 (3)
C1—P1—C24	110.56 (12)	C22—C21—H21A	120.2
C1—P1—C31	113.33 (11)	C20—C21—H21A	120.2
C24—P1—C31	107.91 (15)	C21—C22—C23	121.1 (3)
C1—P1—C25	112.83 (13)	C21—C22—H22A	119.5
C24—P1—C25	103.97 (12)	C23—C22—H22A	119.5
C31—P1—C25	107.71 (12)	C22—C23—C18	120.4 (3)
C5—C1—C2	107.6 (2)	С22—С23—Н23А	119.8
C5—C1—P1	125.34 (17)	C18—C23—H23A	119.8
C2-C1-P1	126.82 (18)	P1—C24—H24A	109.5
C5-C1-Mo1	72.61 (12)	P1—C24—H24B	109.5
C2-C1-Mo1	73.82 (13)	H24A—C24—H24B	109.5
P1-C1-Mo1	114.83 (12)	P1—C24—H24C	109.5
C3—C2—C1	107.6 (2)	H24A—C24—H24C	109.5
C3—C2—C12	125.3 (2)	H24B—C24—H24C	109.5
C1—C2—C12	126.2 (2)	C30—C25—C26	119.2 (3)
C3—C2—Mo1	72.86 (13)	C30—C25—P1	121.8 (2)
C1—C2—Mo1	70.84 (13)	C26—C25—P1	118.7 (3)
C12-C2-Mo1	130.15 (16)	C27—C26—C25	120.3 (4)
C2—C3—C4	107.8 (2)	С27—С26—Н26А	119.9
C2—C3—C18	129.1 (2)	С25—С26—Н26А	119.9
C4—C3—C18	122.9 (2)	C28—C27—C26	120.0 (4)
C2—C3—Mo1	73.06 (14)	С28—С27—Н27А	120.0
C4—C3—Mo1	70.97 (14)	С26—С27—Н27А	120.0
C18—C3—Mo1	125.42 (16)	C27—C28—C29	120.5 (3)
C5—C4—C3	109.8 (2)	C27—C28—H28A	119.8
C5—C4—Mo1	73.33 (15)	C29—C28—H28A	119.8
C3—C4—Mo1	74.18 (14)	C28—C29—C30	120.0 (3)
C5—C4—H4A	124.9	С28—С29—Н29А	120.0
C3—C4—H4A	124.9	С30—С29—Н29А	120.0
Mo1—C4—H4A	124.9	C25—C30—C29	120.1 (3)
C4—C5—C1	107.3 (2)	С25—С30—Н30А	120.0
C4—C5—C6	123.3 (2)	С29—С30—Н30А	120.0
C1—C5—C6	128.7 (2)	C32—C31—C36	120.1 (3)
C4—C5—Mo1	72.38 (14)	C32—C31—P1	120.3 (2)
C1—C5—Mo1	72.07 (12)	C36—C31—P1	119.5 (2)
C6C5Mo1	128.72 (16)	C31—C32—C33	119.0 (3)
C7—C6—C11	117.8 (2)	C31—C32—H32A	120.5
C7—C6—C5	122.4 (2)	C33—C32—H32A	120.5
C11—C6—C5	119.7 (2)	C34—C33—C32	119.6 (4)
C6—C7—C8	121.2 (3)	С34—С33—Н33А	120.2

С6—С7—Н7А	119.4	С32—С33—Н33А	120.2
С8—С7—Н7А	119.4	C35—C34—C33	121.6 (4)
С9—С8—С7	120.5 (3)	C35—C34—H34A	119.2
С9—С8—Н8А	119.8	C33—C34—H34A	119.2
С7—С8—Н8А	119.8	C34—C35—C36	120.5 (5)
С10—С9—С8	119.4 (3)	С34—С35—Н35А	119.8
С10—С9—Н9А	120.3	С36—С35—Н35А	119.8
С8—С9—Н9А	120.3	C35—C36—C31	119.2 (4)
C9—C10—C11	120.4 (3)	С35—С36—Н36А	120.4
С9—С10—Н10А	119.8	С31—С36—Н36А	120.4
С11—С10—Н10А	119.8	O1—C37—Mo1	178.2 (3)
C6-C11-C10	120.7 (3)	O2-C38-Mo1	178.8 (3)
C6—C11—H11A	119.7	O3—C39—Mo1	179.1 (3)
C10-C11-H11A	119.7		

Fig. 1